Chapter 1: Introduction to System

Short Question from the Chapter "Introduction to System":

EXERCISE Short Questions with Answers

1. Define a system. What are its basic components?

Ans. A system is a group of parts that work together to achieve a common goal. The **basic components** are:

- **Input** \rightarrow things we give to the system.
- **Process** → work done inside the system.
- **Output** → results produced.
- **Storage** \rightarrow keeps data for later use.
- **Control** → checks that the system is working properly.

2. Differentiate between natural and artificial systems.

Ans.

- Natural systems: Made by nature, not by humans. Example: solar system, human body.
- **Artificial systems**: Made by humans for specific goals. Example: banking system, computer network.

3. Describe the main components of a computer system.

Ans. The main components are:

- 1. **Input devices** (keyboard, mouse)
- 2. **Processing unit** (CPU, ALU, CU)
- 3. **Output devices** (monitor, printer)
- 4. **Storage** (RAM, hard disk)
- 5. **Control system** (Operating System)

4. List and describe the types of computing systems.

Ans.

- **Microcomputers** → small computers like desktops and laptops.
- **Minicomputers** → medium-sized, used by small businesses.
- Mainframes \rightarrow large computers, used by banks, airlines.
- Supercomputers → very powerful, used for weather forecasting, space research.

5. What are the main components of the Von Neumann architecture?

Ans.

- 1. Input/Output devices
- 2. Memory unit
- 3. Arithmetic Logic Unit (ALU)
- 4. Control Unit (CU)
- 5. System bus (for communication)

6. What is the Von Neumann computer architecture? List its key components.

Ans. The Von Neumann architecture is a computer design where data and instructions are stored in the same memory.

Its key components are:

- Input/Output devices
- Memory
- Arithmetic Logic Unit (ALU)
- Control Unit (CU)
- System bus

7. What are the four main steps in the Von Neumann architecture's instruction cycle?

Ans.

- 1. **Fetch** \rightarrow get instruction from memory.
- 2. **Decode** \rightarrow understand the instruction.
- 3. **Execute** \rightarrow perform the instruction.
- 4. **Store** \rightarrow save the result (if needed).

8. What is the Von Neumann bottleneck?

Ans. It is the **slow speed problem** that happens because both data and instructions use the same path (system bus). This creates a bottleneck (traffic jam).

9. What is a key advantage of the Von Neumann architecture?

Ans. It uses one memory for both data and instructions, which makes the design simple, flexible, and cheaper.

10. What are the three main requirements for a computing system to function?

Ans.

- 1. **Hardware** \rightarrow physical parts of computer.
- 2. **Software** \rightarrow programs that give instructions.
- 3. **User** \rightarrow person who operates the system.

Additional Short Questions with Answers

Topic 1: Definition & Characteristics of a System

Q1. What is the main purpose of a system?

A system works to achieve a specific goal or objective by combining its parts.

Q2. Why is "interconnection" important in a system?

Because without connection between parts, the system cannot work as one unit.

Q3. What do we mean by the boundary of a system?

It separates the system from its environment and shows what is inside or outside.

Q4. Give one example of a system in daily life.

A school system: students (input), teaching (process), and educated students (output).

Q5. Why are objectives necessary for a system?

Without objectives, a system has no direction or purpose.

Topic 2: Components of a System

Q1. What is the role of Input in a system?

Input provides the raw material or data for processing.

Q2. Why is Process important in a system?

Process converts input into meaningful output.

Q3. What is Output?

Output is the final result produced by the system after processing.

Q4. What is the function of Storage in a system?

It saves data and instructions for current or future use.

Q5. Why is Control important in a system?

Control checks if the system is working properly and meeting its goal.

Topic 3: Types of Systems

Q1. Give two examples of natural systems.

Examples: human body and solar system.

Q2. Give two examples of artificial systems.

Examples: banking system and traffic control system.

Q3. What is a simple system?

A system with few components and easy operation, e.g., thermostat.

Q4. What is a complex system?

A system with many components, like the Internet.

Q5. Differentiate between open and closed system.

Open system interacts with environment; closed system does not.

Topic 4: System Environment & Boundaries

Q1. What is meant by system environment?

Everything outside the system boundary that can affect it.

Q2. What is a static environment?

An environment that stays the same unless the system changes it.

Q3. What is a dynamic environment?

An environment that changes continuously on its own.

Q4. How does feedback connect a system with its environment?

Feedback helps the system adjust according to environment changes.

Q5. Give an example of a system and its environment.

A school (system) and society (environment).

Topic 5: System Modeling & Abstraction

Q1. What is system modeling?

It is creating a simple picture of a system to understand it easily.

Q2. Why do we use block diagrams in system modeling?

To show the relationship between input, process, and output.

Q3. What is abstraction in systems?

It means ignoring extra details and focusing on main points.

Q4. Give one benefit of system modeling.

It helps in problem solving and designing new systems.

Q5. Give an example of a simple model.

Traffic light model showing inputs, process, and outputs.

Topic 6: Computer as a System (Von Neumann, OS, Bus)

Q1. Why is a computer called a system?

Because it has input, process, output, storage, and control parts.

Q2. What is the role of the Operating System (OS)?

It manages hardware, software, and user interaction.

Q3. What is Von Neumann architecture?

It is a computer design where data and instructions share the same memory.

Q4. What is the Von Neumann bottleneck?

A slow speed problem due to one path for data and instructions.

Q5. What is the role of the system bus?

It transports data, instructions, and control signals among components.