

Chapter 2: Number Systems

MCQs from the Chapter “Number System”:

EXERCISE MCQs with Answers

1. What does ASCII stand for?

- (a) American Standard Code for Information Interchange ✓
- (b) Advanced Standard Code for Information Interchange
- (c) American Standard Communication for Information Interchange
- (d) Advanced Standard Communication for Information Interchange

2. Which of the following numbers is a valid binary number?

- (a) 1101102
- (b) 11011 ✓
- (c) 110.11
- (d) 1101A

3. How many bits are used in the standard ASCII encoding?

- (a) 7 bits ✓
- (b) 8 bits
- (c) 16 bits
- (d) 32 bits

4. Which of the following is a key advantage of Unicode over ASCII?

- (a) It uses fewer bits per character
- (b) It can represent characters from many different languages ✓
- (c) It is backward compatible with binary
- (d) It is specific to the English language

5. How many bytes are used to store a typical integer?

- (a) 1 byte
- (b) 2 bytes
- (c) 4 bytes ✓
- (d) 8 bytes

6. What is the primary difference between signed and unsigned integers?

- (a) Unsigned integers cannot be negative ✓
- (b) Signed integers have a larger range
- (c) Unsigned integers are stored in floating-point format
- (d) Signed integers are only used for positive numbers

7. In the single precision, how many bits are used for the exponent?

- (a) 23 bits
- (b) 8 bits ✓
- (c) 11 bits
- (d) 52 bits

8. What is the approximate range of values for single-precision floating-point numbers?

(a) 1.4×10^{-45} to 3.4×10^{38} ✓ (b) 1.4×10^{-38} to 3.4×10^{45}
 (c) 4.9×10^{-324} to 1.8×10^{308} (d) 4.9×10^{-308} to 1.8×10^{324}

9. What are the tiny dots that make up an image called?

(a) Pixels ✓ (b) Bits
 (c) Bytes (d) Nodes

10. In an RGB color model, what does RGB stand for?

(a) Red, Green, Blue ✓ (b) Red, Gray, Black
 (c) Right, Green, Blue (d) Red, Green, Brown

Final Answers:

1 → (a) - 2 → (b) - 3 → (a) - 4 → (b) - 5 → (c) - 6 → (a) - 7 → (b) - 8 → (a) - 9 → (a) - 10 →
 (a)

Additional MCQs

1. Number Systems & Types**Q1.** Which number system uses base 2?

(a) Decimal (b) Binary ✎
 (c) Octal (d) Hexadecimal

Q2. The decimal number system is based on how many digits?

(a) 2 (b) 8
 (c) 10 ✎ (d) 16

Q3. The octal number system uses which digits?

(a) 0–7 ✎ (b) 0–8
 (c) 1–7 (d) 0–9

Q4. Hexadecimal system uses digits and letters from?

(a) 0–7 (b) 0–9 and A–F ✎
 (c) 0–9 and A–Z (d) 0–15

Q5. What is the base of hexadecimal?

(a) 2 (b) 8
 (c) 10 (d) 16 ✎

2. Conversions between Number Systems

Q6. The binary number 1011 equals what in decimal?

Q7. The decimal number 25 equals what in binary?

(a) 10011 ✓ (b) 11001
 (c) 10101 (d) 11100

Q8. The octal number 17 is equal to which decimal value?

(a) 15 ✓ (b) 16
 (c) 17 (d) 18

Q9. Convert hexadecimal A to decimal.

Q10. Which of these is the binary of hexadecimal F?

3. Binary Arithmetic

Q11. What is the result of $101 + 11$ (binary addition)?

(a) 110 (b) 1000 ✓
(c) 1010 (d) 111

Q12. What is $1101 - 101$ (binary subtraction)?

(a) 1110 (b) 1000 ✓
(c) 1011 (d) 1100

Q13. Which rule is correct for binary multiplication?

(a) $1 \times 1 = 1 \checkmark$ (b) $1 \times 1 = 0$
 (c) $1 \times 0 = 1$ (d) $0 \times 0 = 1$

Q14. Binary division: $1100 \div 10 = ?$

(a) 101 (b) 110 ✓
 (c) 111 (d) 1000

Q15. Which carry is produced when adding 1 + 1 in binary?

- (a) 0
- (b) 1
- (c) 2
- (d) None

4. Data Representation (ASCII, Unicode, Integers, Floating Point)

Q16. How many bits are used in ASCII?

- (a) 7
- (b) 8
- (c) 16
- (d) 32

Q17. Unicode can represent:

- (a) Only English characters
- (b) Only symbols
- (c) Characters from many languages
- (d) Only numbers

Q18. Unsigned integers cannot represent:

- (a) Positive numbers
- (b) Zero
- (c) Negative numbers
- (d) Decimal numbers

Q19. In single precision, exponent field size is:

- (a) 23
- (b) 8
- (c) 11
- (d) 52

Q20. The approximate range of single-precision floating numbers is:

- (a) 1.4×10^{-45} to 3.4×10^{38}
- (b) 1.4×10^{-38} to 3.4×10^{45}
- (c) 4.9×10^{-324} to 1.8×10^{308}
- (d) 4.9×10^{-308} to 1.8×10^{324}

5. Graphics & Colors

Q21. Tiny dots that make up an image are called?

- (a) Pixels
- (b) Bits
- (c) Bytes
- (d) Nodes

Q22. RGB model stands for:

- (a) Red, Green, Blue
- (b) Red, Gray, Black
- (c) Right, Green, Brown
- (d) Red, Green, Bright

Q23. If an image has 1920×1080 resolution, how many pixels does it have?

- (a) 1,920
- (b) 1,080
- (c) 2,073,600
- (d) $1920 + 1080$

Q24. In an 8-bit grayscale image, how many shades of gray can be represented?

- (a) 128
- (b) 256
- (c) 512
- (d) 1024

Q25. Which color is produced when RGB values are (255, 0, 0)?

- (a) Blue
- (b) Green
- (c) Red
- (d) White
