
Class 9 Computer Science & Entrepreneurship CH#3 The smart Study.info

www.thesmartstudy.info

Chapter 3: Digital Systems and Logic Design
LONG Question from the Chapter “Digital Systems and Logic Design”:

EXERCISE LONG Question with Answers

1. Explain the usage of Boolean functions in computers.

Answer (concise + clear):

 A Boolean function maps Boolean input variables (0/1 or FALSE/TRUE) to a Boolean

output. In computers, Boolean functions are used wherever decisions or binary choices

are needed.

 Hardware: Logic gates implement Boolean functions physically — processors, ALUs,

control units, memory address decoders and multiplexers all use Boolean logic.

 Control & decision making: Example — a condition if (A AND B) then ...

corresponds to the Boolean function A·B.

 Arithmetic circuits: Adders and comparators implement Boolean functions (sum and

carry are Boolean expressions of input bits).

 Software & algorithms: Conditional statements, bit masks, and logical operators in

programming languages are Boolean expressions used for flow control and checks.

 Summary: Boolean functions form the foundation of digital design; they convert logical

specifications into realizable gate circuits and software conditions.

2. Describe how to construct a truth table for a Boolean expression

with an example.

Steps (method):

1. List variables: Identify the input variables (for example A, B, C).

2. Rows: Create a table with 2n2^n rows (n = number of variables) that lists all possible

combinations of inputs in binary order (e.g., 000, 001, 010,...).

3. Evaluate sub-expressions (optional): If the expression is complex, compute intermediate

parts column-by-column.

4. Compute final output for each row using the Boolean operators.

5. Write result in the output column.

Class 9 Computer Science & Entrepreneurship CH#3 The smart Study.info

www.thesmartstudy.info

3. Describe the concept of duality in Boolean algebra and provide an

example to illustrate it.

Principle (short):
The principle of duality states: If you take any Boolean identity/expression and swap every AND

(·) with OR (+) and every 0 with 1 (and vice versa), the result is also a valid Boolean identity.

Complement and variables remain unchanged.

Example:

 Start with identity: A⋅0=0A \cdot 0 = 0.

 Dual: replace · → +, and 0 → 1: A+1=1A + 1 = 1.

Both are true identities.

Another example:

 Identity: A+A=AA + A = A. Dual is A⋅A=AA \cdot A = A — both true.

Use: Duality helps generate new valid identities and is often used to check work when

simplifying expressions.

4. Compare and contrast half-adders and full-adders, including

their truth tables, Boolean expressions, and circuit diagrams.

Half-Adder

 Purpose: Adds two single bits (A and B) and produces Sum and Carry. There is no

input carry.

 Inputs: A, B

 Outputs: Sum (S), Carry (C)

Class 9 Computer Science & Entrepreneurship CH#3 The smart Study.info

www.thesmartstudy.info

Truth table:

A B Sum (S) Carry (C)

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

Boolean expressions:

 S=A⊕B=AB‾+A‾BS = A \oplus B = A\overline{B} + \overline{A}B

 C=A⋅BC = A\cdot B

Circuit: XOR gate produces Sum; AND gate produces Carry. (Diagram: A and B to XOR → S;

A and B to AND → C.)

Full-Adder

 Purpose: Adds three bits — two operands (A, B) and a carry-in (Cin). Produces Sum

and Carry-out (Cout). Used in cascaded adders.

 Inputs: A, B, Cin

 Outputs: Sum (S), Cout

Truth table (8 rows):

A B Cin Sum (S) Cout

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

Class 9 Computer Science & Entrepreneurship CH#3 The smart Study.info

www.thesmartstudy.info

A B Cin Sum (S) Cout

1 1 0 0 1

1 1 1 1 1

Boolean expressions:

 S=A⊕B⊕CinS = A \oplus B \oplus Cin

(equivalently S=(A⊕B)⊕CinS = (A\oplus B)\oplus Cin)

 Cout=(A⋅B)+(Cin⋅(A⊕B))Cout = (A\cdot B) + (Cin\cdot(A\oplus B))

(equivalently Cout=A⋅B+A⋅Cin+B⋅CinCout = A\cdot B + A\cdot Cin + B\cdot Cin)

Circuit (construction):

 A typical implementation uses two half-adders and an OR gate:

1. First half-adder: inputs A, B → produces S1 and C1 (S1 = A⊕B, C1 = A·B).

2. Second half-adder: inputs S1, Cin → produces Sum S and C2 (S = S1⊕Cin, C2 =

S1·Cin).

3. Cout = C1 + C2 (OR gate).

 This modular design makes it easy to cascade full adders for multi-bit addition.

Comparison summary:

 Half-adder: 2 inputs, no input carry; Full-adder: 3 inputs including carry-in.

 Full-adder handles carry propagation, so it is used in multi-bit adders (ripple-carry

adders).

5. How do Karnaugh maps simplify Boolean expressions? Provide a

detailed example with steps.

Idea (short):

 Karnaugh map (K-map) is a visual method for minimizing Boolean expressions by

grouping adjacent 1s (or 0s) in a grid that represents all minterms. Groups must be

powers of two (1,2,4,8...). Grouping yields simplified product terms by eliminating

variables that change within the group.

Example: Simplify F(A,B,C)=Σm(1,3,4,5,7)F(A,B,C) = \Sigma m(1,3,4,5,7). That is, F = 1 for

minterms 1,3,4,5,7.

Steps:

Class 9 Computer Science & Entrepreneurship CH#3 The smart Study.info

www.thesmartstudy.info

1. Draw 3-variable K-map (rows and columns in Gray code):

 BC

 00 01 11 10

A=0 m0 m1 m3 m2

A=1 m4 m5 m7 m6

2. Mark 1s at minterms: m1, m3, m4, m5, m7

K-map with 1s:

 (A=0,BC=01) m1 = 1

 (A=0,BC=11) m3 = 1

 (A=1,BC=00) m4 = 1

 (A=1,BC=01) m5 = 1

 (A=1,BC=11) m7 = 1

Class 9 Computer Science & Entrepreneurship CH#3 The smart Study.info

www.thesmartstudy.info

6. Design a 4-bit binary adder using both half-adders and full-

adders. Explain each step with truth tables, Boolean expressions,

and circuit diagrams.

Design approach: Use ripple-carry adder with four full-adders chained; the least-significant

bit (LSB) can be implemented with a half-adder if there is no input carry, but usually we use

full adders for uniformity (Cin for first bit may be 0).

Steps:

1. Bit positions: Let inputs be A3 A2 A1 A0 and B3 B2 B1 B0 (A0 and B0 are LSB). Let

Cin0 be initial carry-in (often 0). Outputs are Sum3..Sum0 and final carry Cout4.

2. LSB stage (bit 0):
o If no external carry-in, you can use a half-adder:

Sum0 = A0 ⊕ B0

Carry0 = A0·B0

o If a carry-in exists, use a full-adder: Sum0 = A0 ⊕ B0 ⊕ Cin0; Carry0 =

(A0·B0) + (Cin0·(A0⊕B0)).

3. Middle stages (bit 1..2): Use full-adder for each bit i:

o Sum_i = A_i ⊕ B_i ⊕ Carry_{i}

o Carry_{i+1} = (A_i·B_i) + (Carry_i·(A_i⊕B_i))

4. MSB (bit 3): Full-adder same formula produces Sum3 and final carry Cout4.

Circuit diagram (description):

 Four full adders stacked left-to-right (or right-to-left). Carry output of stage i connects to

carry input of stage i+1 (ripple). Sum outputs taken from each stage. Optionally, the first

stage uses a half-adder if Cin0 = 0.

Truth tables & expressions:

 Each full-adder internally uses the half-adder expressions shown in Q4. The truth table

for a full-adder was provided earlier (8 rows). Each stage uses that table for A_i, B_i, Cin

to produce Sum_i and Cout_{i+1}.

Example numeric check: Add A = 0101 (5) and B = 0011 (3):

 Stage0: 1+1 = Sum0 0, Carry0 1

 Stage1: 0+1 + Carry0(1) => Sum1 = 0, Carry1 =1

 Stage2: 1+0 + Carry1 => Sum2 =0, Carry2 =1

 Stage3: 0+0 + Carry2 => Sum3 =1, final carry = 0

Result = 1000 (8) — correct (5+3=8).

Class 9 Computer Science & Entrepreneurship CH#3 The smart Study.info

www.thesmartstudy.info

Note on performance: Ripple-carry adder is simple but slow for many bits because carries

propagate sequentially. For high-performance adders, carry-lookahead or other faster schemes

are used.

7. Simplify the following Boolean function using Boolean algebra

rules:

8. Use De Morgan's laws to simplify the following function:

Class 9 Computer Science & Entrepreneurship CH#3 The smart Study.info

www.thesmartstudy.info

9. Simplify the following expressions

Class 9 Computer Science & Entrepreneurship CH#3 The smart Study.info

www.thesmartstudy.info

Class 9 Computer Science & Entrepreneurship CH#3 The smart Study.info

www.thesmartstudy.info

Class 9 Computer Science & Entrepreneurship CH#3 The smart Study.info

www.thesmartstudy.info

Additional MCQs with Answers

