Class 9 Computer Science & Entrepreneurship CH#3 The smart Study.info

Chapter 3: Digital Systems and Logic Design

LONG Question from the Chapter “Digital Systems and Logic Design”:

EXERCISE LONG Question with Answers

1. Explain the usage of Boolean functions in computers.

Answer (concise + clear):

A Boolean function maps Boolean input variables (0/1 or FALSE/TRUE) to a Boolean
output. In computers, Boolean functions are used wherever decisions or binary choices
are needed.

Hardware: Logic gates implement Boolean functions physically — processors, ALUS,
control units, memory address decoders and multiplexers all use Boolean logic.
Control & decision making: Example — a condition if (A AND B) then ...
corresponds to the Boolean function a -B.

Arithmetic circuits: Adders and comparators implement Boolean functions (sum and
carry are Boolean expressions of input bits).

Software & algorithms: Conditional statements, bit masks, and logical operators in
programming languages are Boolean expressions used for flow control and checks.
Summary: Boolean functions form the foundation of digital design; they convert logical
specifications into realizable gate circuits and software conditions.

2. Describe how to construct a truth table for a Boolean expression
with an example.

Steps (method):

1.
2.

3.

o

List variables: Identify the input variables (for example A, B, C).

Rows: Create a table with 2n2n rows (n = number of variables) that lists all possible
combinations of inputs in binary order (e.g., 000, 001, 010,...).

Evaluate sub-expressions (optional): If the expression is complex, compute intermediate
parts column-by-column.

Compute final output for each row using the Boolean operators.

Write result in the output column.

www.thesmartstudy.info

Class 9 Computer Science & Entrepreneurship CH#3 The smart Study.info

Example: Construct truth table for F(A, B) = A - B + A - B (which is XOR).

A B B A-B A A-B F
0 0 1 0 1 0 0
0 1 0 0 1 1 1
1 0 1 1 0 0 1
1 1 0 0 0 0 0

So F' = 1 only when A and B differ — this is XOR.

3. Describe the concept of duality in Boolean algebra and provide an
example to illustrate it.

Principle (short):

The principle of duality states: If you take any Boolean identity/expression and swap every AND
(-) with OR (+) and every o with 1 (and vice versa), the result is also a valid Boolean identity.
Complement and variables remain unchanged.

Example:
o Start with identity: A-0=0A \cdot 0 = 0.
e Dual: replace - — +,and 0 — 1: A+1=1A +1=1.
Both are true identities.
Another example:

e ldentity: A+A=AA + A = A. Dual is A-A=AA \cdot A = A — both true.

Use: Duality helps generate new valid identities and is often used to check work when
simplifying expressions.

4. Compare and contrast half-adders and full-adders, including
their truth tables, Boolean expressions, and circuit diagrams.

Half-Adder
e Purpose: Adds two single bits (A and B) and produces Sum and Carry. There is no
input carry.
e Inputs: A, B

e Outputs: Sum (S), Carry (C)

www.thesmartstudy.info

Class 9 Computer Science & Entrepreneurship CH#3 The smart Study.info

Truth table:
A B Sum (S) Carry (C)
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Boolean expressions:

e S=A®@B=AB™+A™BS = A \oplus B = Aloverline{B} + \overline{A}B
e C=A-BC=A\dotB

Circuit: XOR gate produces Sum; AND gate produces Carry. (Diagram: A and B to XOR — S;
A and B to AND — C.)

Full-Adder

e Purpose: Adds three bits — two operands (A, B) and a carry-in (Cin). Produces Sum
and Carry-out (Cout). Used in cascaded adders.

e Inputs: A, B, Cin

e Outputs: Sum (S), Cout

Truth table (8 rows):

A B Cin Sum (S) Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1

www.thesmartstudy.info

Class 9 Computer Science & Entrepreneurship CH#3 The smart Study.info

A B Cin Sum (S) Cout
1 1 0 0 1
1 1 1 1 1

Boolean expressions:

o S=A®B®DCIinS = A\oplus B \oplus Cin
(equivalently S=(A@B)@CinS = (A\oplus B)\oplus Cin)

e Cout=(A-B)+(Cin-(A@B))Cout = (A\cdot B) + (Cin\cdot(A\oplus B))
(equivalently Cout=A-B+A-Cin+B-CinCout = A\cdot B + A\cdot Cin + B\cdot Cin)

Circuit (construction):

« A typical implementation uses two half-adders and an OR gate:
1. First half-adder: inputs A, B — produces S1 and C1 (S1 = A@B, C1 = A-B).
2. Second half-adder: inputs S1, Cin — produces Sum S and C2 (S =S14Cin, C2 =
S1-Cin).
3. Cout=C1+ C2 (OR gate).
e This modular design makes it easy to cascade full adders for multi-bit addition.

Comparison summary:
o Half-adder: 2 inputs, no input carry; Full-adder: 3 inputs including carry-in.

« Full-adder handles carry propagation, so it is used in multi-bit adders (ripple-carry
adders).

5. How do Karnaugh maps simplify Boolean expressions? Provide a
detailed example with steps.
Idea (short):

o Karnaugh map (K-map) is a visual method for minimizing Boolean expressions by
grouping adjacent 1s (or 0s) in a grid that represents all minterms. Groups must be
powers of two (1,2,4,8...). Grouping yields simplified product terms by eliminating
variables that change within the group.

Example: Simplify F(A,B,C)=2m(1,3.4,5,7)F(A,B,C) =\Sigma m(1,3,4,5,7). That is, F = 1 for
minterms 1,3,4,5,7.

Steps:

www.thesmartstudy.info

Class 9 Computer Science & Entrepreneurship CH#3 The smart Study.info

1. Draw 3-variable K-map (rows and columns in Gray code):

BC
00 01 11 10
mO0 ml m3 m2
m4 m5 m7 m6

T
= O

2. Mark 1s at minterms: m1, m3, m4, m5, m7
K-map with 1s:

« (A=0,BC=01)ml=1
« (A=0,BC=11)m3=1
« (A=1,BC=00)m4 =1
« (A=1,BC=01)m5=1
« (A=1,BC=11)m7=1

3. Group adjacent 1s (largest groups of size power of two):

s Groupl: m3 (A0,BC11) and m7 (A1,BC11) — vertical pair; they differ only in A — group simplifies to BC =
11 —-term= B - C.

s Group2: m4 (A1,BC00) and m5 (A1,BC01) — horizontal pair; they differ in C only — group simplifies to A-
B (since BC are 00 & 01 — B=0 constant, A=1 constant} — term = A - B.

e« Group3: m1 (AO,BCO1) and m5 (A1,BC01) — vertical pair; they differ only in A — simplifies to B - C'?
Wait: BC=01 so B=0, C=1 — term = B - C'. But note m5 already used; overlapping groups OK to get
largest simplification.

We can often cover all 1s with groups: m1+m5 pair gives B - C. Combined with previous groups, cover all
minterms.

4, Write simplified expression: Combine group terms:

F=B-C+A-B+B-C.

5. Further simplification: Factor B from last two terms:

F=BC+B(A+0)

If desired, check if any term is redundant; often further simplification possible, but this is already simpler

than sum of five minterms.

Result: K-map produces a minimized expression faster than algebraic manipulation.

www.thesmartstudy.info

Class 9 Computer Science & Entrepreneurship CH#3 The smart Study.info

6. Design a 4-bit binary adder using both half-adders and full-
adders. Explain each step with truth tables, Boolean expressions,
and circuit diagrams.

Design approach: Use ripple-carry adder with four full-adders chained; the least-significant
bit (LSB) can be implemented with a half-adder if there is no input carry, but usually we use
full adders for uniformity (Cin for first bit may be 0).

Steps:

1. Bit positions: Let inputs be A3 A2 A1 A0 and B3 B2 B1 B0 (A0 and BO are LSB). Let
Cin0 be initial carry-in (often 0). Outputs are Sum3..SumO and final carry Cout4.
2. LSB stage (bit 0):
o If no external carry-in, you can use a half-adder:
Sum0 = A0 @ BO
Carry0 = A0-BO
o Ifacarry-in exists, use a full-adder: Sum0 = A0 @ B0 @ Cin0; Carry0 =
(A0-B0) + (Cin0- (A0 BO0)).
3. Middle stages (bit 1..2): Use full-adder for each bit i:
o Sum_i=A_i® B i@ Carry {i}
o Carry {i+1}=(A_i-B_i) + (Carry_i-(A_IPB 1i))
4. MSB (bit 3): Full-adder same formula produces Sum3 and final carry Cout4.

Circuit diagram (description):

o Four full adders stacked left-to-right (or right-to-left). Carry output of stage i connects to
carry input of stage i+1 (ripple). Sum outputs taken from each stage. Optionally, the first
stage uses a half-adder if Cin0 = 0.

Truth tables & expressions:

o Each full-adder internally uses the half-adder expressions shown in Q4. The truth table
for a full-adder was provided earlier (8 rows). Each stage uses that table for A_i, B_i, Cin
to produce Sum_i and Cout_{i+1}.

Example numeric check: Add A = 0101 (5) and B = 0011 (3):

Stage0: 1+1 = SumO0 0, Carry0 1

Stagel: 0+1 + Carry0O(1) => Suml1 =0, Carryl =1
Stage2: 1+0 + Carryl => Sum2 =0, Carry2 =1
Stage3: 0+0 + Carry2 => Sum3 =1, final carry =0
Result = 1000 (8) — correct (5+3=8).

www.thesmartstudy.info

Class 9 Computer Science & Entrepreneurship CH#3 The smart Study.info

Note on performance: Ripple-carry adder is simple but slow for many bits because carries
propagate sequentially. For high-performance adders, carry-lookahead or other faster schemes
are used.

7. Simplify the following Boolean function using Boolean algebra
rules:

(interpreting printed expression as)
F(A,B)=A-B + A-B

Simplification (step-by-step):

1. Factor out A:
F—=A-(B+ B)

2. Use complementlaw: B + B — 1.
3. SoF=A-1—= A.

Answer: F(A, B) = A.

(Thus the function outputs A irrespective of B.)

8. Use De Morgan's laws to simplify the following function:

www.thesmartstudy.info

Class 9 Computer Science & Entrepreneurship CH#3 The smart Study.info

Given (interpreted): A + B + AC —ie complement of (4 + B + AC'). | will apply De Morgan to the

complement.

Using De Morgan'’s laws:

X+Y=-X-Y, X -Y=X+Y.
Applyto A+ B + AC:
A+B+AC—=A-B-AC.

Now AC = A+ C (by De Morgan).
So:

A+B+AC=A-B-(A+0C).
Distribute A:
Butz-z = E,so:

Factor A - B:

(Usingl + X = 1)

Final simplified form: .

9. Simplify the following expressions

www.thesmartstudy.info

Class 9 Computer Science & Entrepreneurship CH#3 The smart Study.info

@A+ B-(A+B)
Steps:
1. expand B- (A+ B)=B-A+ B - B.
2. But B-B = 0.Sothatpartis B - A.
3. Now expression becomes A + (A - B).
4. Use consensus/covering: A + A-B=A+4+ B-A Wecanappy X + XY = X + Y withX = 4
7 Better to check another identity:
Use X + XY =X + Y withX — Agives A+ A-B—= A+ B.
Wait that substitution is tricky. Instead observe:
5. Using distributive: A + A-B = (A+ A)-(A+B)=1-(A+B)= A+ B.
Weused X +YZ = (X +Y)(X + Z))

Simplified result: A+ B|

b) (A+B)- (A + B)
This is a common expression; it equals A @ B (XOR) or simplifies to AB + AB.
Proof (expand):

(A+ B)(A+ B)=AA+ AB + BA + BB.
But AA = 0and BB = 0. 50

— AB + AB? Wait check terms: BA = AB.

So we have AB + AB. That is the XNOR function (equal when bits equal). But earlier | thought XOR —

check carefully.
Let's compute with truth table quickly:

o A=0B=0: (0+1)(1+0)=11=1
o A=0B=1: (0+0)(1+1)=01=0
o A=1B=0: (1+1)(0+0)=10=0
o A=1B=1: (1+0)(0+1)=11=1

So expression is 1 when A=E; it's XNOR: A & B or AB + AB.

Simplified result:| A - B + A - B |(XNOR).

www.thesmartstudy.info

Class 9 Computer Science & Entrepreneurship CH#3 The smart Study.info

©QA+A.-(B+C)

Steps:

1. Distribute: A + AB + AC.

2. GoupA+ AB=(A+ A)(A+B)=1-(A+B)= A+ B.
So expression becomes A + B + AC.

3. NwA+ AC = A+ C7Useidentity X + XY = X + Y withX = A, Y = Ciyes, A +
AC=A+C.

4. Sofullbecomes(A—l—C']+§=A+G+§.

Yau can also reorder: final simplified form is| 4 + B+C (since A + C + B same).

dA-B+A-B

This is the XOR function.

Simplified result: (ie., Twhen A 2 B).

(e (A-B)+(A-B)

This is the XNOR function (1 when A = B).

Result:orA-B-l—X-F.

www.thesmartstudy.info

Class 9 Computer Science & Entrepreneurship CH#3 The smart Study.info

Additional MCQs with Answers

1. Analyze the significance of digital logic in modern electronics, focusing on its applications in computers, smartphones,
and adder circuits.

2. Discuss the role of Boolean functions in digital systems, including their applications in arithmetic operations, data
processing, and control logic.

3. Explain the difference between analog and digital signals, and discuss the importance of ADC and DAC in modern
technology with examples.

4. Explain the construction and operation of half-adder and full-adder circuits, including their truth tables, Boolean
expressions, and circuit diagrams.
5. How do Karnaugh maps simplify Boolean expressions? Provide a detailed example with steps.

6. Describe how Karnaugh maps are used to simplify Boolean expressions, with a step-by-step example for a three-variable
function.

7. Explain the usage of Boolean functions in computers.

8. Simplify the following Boolean function using Boolean algebra rules: F(A, B)y=A - B+ A - B

9. Discuss the process of simplifying Boolean expressions using Boolean algebra rules, providing at least three examples of
simplification.

10. Use De Morgan's laws to simplify the following function: F(A, B, C)=A + B+ AC

11. Describe the primary logic gates (AND, OR, NOT, NAND, XOR) and their functions, including their truth tables and
real-world applications.

12. Compare and contrast half-adders and full-adders, including their truth tables, Boolean expressions, and circuit
diagrams.

13. Explain the structure and purpose of logic diagrams in representing digital circuits, and provide an example of creating
one for a Boolean function.

14. Simplify the following expressions: (a) A+ B- (A + B) (b) (A + E) A+ B)(c)A+ A-(B+ C)(d)A.B+A-B(e)(A-
B)+ (A B)

15. Design a 4-bit binary adder using both half-adders and full-adders. Explain each step with truth tables, Boolean
expressions, and circuit diagrams.

16. Describe the concept of duality in Boolean algebra and provide an example to illustrate it.

17. Describe how to construct a truth table for a Boolean expression with an example.

www.thesmartstudy.info

