

Chapter 2: Kinematics

MCQ's Question from the Chapter "Kinematics":

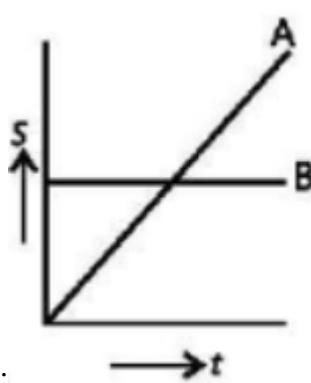
EXERCISE MCQs with Answers

2.1 The numerical ratio of displacement to distance is:

2.2 If a body does not change its position with respect to some fixed point, then it will be in a state of:

(a) rest ✓ (b) motion
(c) uniform motion (d) variable motion

2.3 A ball is dropped from the top of a tower, the distance covered by it in the first second is:


(a) 5 m ✓ (b) 10 m
 (c) 50 m (d) 100 m

2.4 A body accelerates from rest to a velocity of 144 km h^{-1} in 20 seconds. The distance covered by it is:

2.5 A body is moving with constant acceleration starting from rest. It covers a distance S in 4 seconds. How much time does it take to cover one-fourth of this distance?

(a) 1 s ✓ (b) 2 s
 (c) 4 s (d) 16 s

2.6 The displacement-time graphs of two objects A and B are shown in the figure. Point out the true statement from the following:

Graph shown:

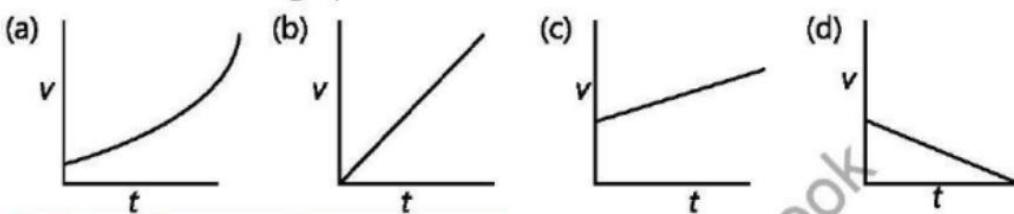
- Line **A** → sloping upward → moving with constant velocity.
- Line **B** → horizontal → body at rest.

(a) The velocity of A is greater than B. ✓ (b) The velocity of A is less than B.
 (c) The velocity of A is equal to that of B. (d) The graph gives no information in this regard.

2.7 The area under the speed-time graph is numerically equal to:

(a) velocity (b) uniform velocity
 (c) acceleration (d) distance covered ✓

2.8 Gradient of the speed-time graph is equal to:


(a) speed (b) velocity
 (c) acceleration ✓ (d) distance covered

2.9 Gradient of the distance-time graph is equal to the:

(a) speed ✓ (b) velocity
 (c) distance covered (d) acceleration

2.10 A car accelerates uniformly from 80.5 km h^{-1} at $t = 0$ to 113 km h^{-1} at $t = 9 \text{ s}$. Which graph best describes the motion of the car?

✓ *Graph options:*

(a) Curved upward (non-uniform acceleration)
 (b) Straight line from origin (starts from zero velocity)
 (c) Straight slanted line upward from non-zero velocity ✓ (correct for uniform acceleration with initial velocity)
 (d) Slanted line downward (deceleration)

Additional MCQs with Answers

1. Distance and Displacement

Q1 Which of the following is a vector quantity?

- (a) Distance
- (b) Speed
- (c) Displacement ✓
- (d) Path length

Q2 If a car goes around a circular track and returns to its starting point, its displacement is:

- (a) Zero ✓
- (b) Equal to distance
- (c) Greater than distance
- (d) Infinity

Q3 Which of the following can never be negative?

- (a) Displacement
- (b) Distance ✓
- (c) Velocity
- (d) Acceleration

2. Speed and Velocity

Q4 The SI unit of velocity is:

- (a) m
- (b) m/s ✓
- (c) km/
- (d) s

Q5 Which quantity can change direction without changing magnitude?

- (a) Speed
- (b) Velocity ✓
- (c) Distance
- (d) Acceleration

Q6 A car completes one round of a circular track with constant speed. Which statement is correct?

- (a) Velocity is constant
- (b) Speed is variable
- (c) Velocity is variable ✓
- (d) Both speed and velocity are constant

3. Acceleration

Q7 Negative acceleration is also called:

- (a) Retardation ✓
- (b) Uniform motion
- (c) Constant velocity
- (d) Positive acceleration

Q8 If a car's velocity changes from 20 m/s to 30 m/s in 5 seconds, its acceleration is:

- (a) 5 m/s² ✓
- (b) 2 m/s²
- (c) 10 m/s²
- (d) 50 m/s²

Q9 The SI unit of acceleration is:

- (a) m/s
- (b) m/s² ✓
- (c) m²/s
- (d) km/h²

4. Graphical Representation of Motion

Q10 The slope of a velocity-time graph gives:

- (a) Displacement
- (b) Speed
- (c) Acceleration ✓
- (d) Distance

Q11 A horizontal line on a distance-time graph indicates:

- (a) Motion with acceleration
- (b) Body at rest ✓
- (c) Uniform speed
- (d) Increasing speed

Q12 The area under a velocity-time graph represents:

- (a) Distance travelled ✓
- (b) Speed
- (c) Acceleration
- (d) Time

5. Equations of Motion

Q13 Which equation of motion relates velocity, acceleration, and displacement?

- (a) $v = u + at$
- (b) $s = ut + \frac{1}{2}at^2$
- (c) $v^2 = u^2 + 2as$ ✓
- (d) None of these

Q14 A body starting from rest under uniform acceleration covers distance 's' in time 't'. Which formula applies?

- (a) $s = ut$
- (b) $s = ut + \frac{1}{2}at^2$ ✓
- (c) $s = v^2 - u^2$
- (d) $s = at$

Q15 If a body starts from rest, then initial velocity (u) is:

- (a) Zero ✓
- (b) Infinite
- (c) Constant
- (d) Undefined

6. Uniform Circular Motion

Q16 In uniform circular motion, the speed of the body is:

- (a) Constant ✓
- (b) Decreasing
- (c) Increasing
- (d) Zero

Q17 In uniform circular motion, acceleration is always directed:

- (a) Along tangent
- (b) Towards center ✓
- (c) Away from center
- (d) Opposite to motion

Q18. The force that provides centripetal acceleration in circular motion is called:

(a) Gravitational force (b) Centripetal force ✓
 (c) Centrifugal force (d) Inertia

Free-Fall Acceleration

Q19. The acceleration of a body in free fall (near Earth's surface) is approximately:

(a) 9.8 m/s² (b) **10 m/s²** ✓
 (c) 9.8 km/h² (d) 980 m/s²

Q20. Free-fall acceleration is caused by:

(a) Earth's magnetic field (b) **Gravity (weight)** ✓
 (c) Air resistance (d) Centripetal force

Q21. Neglecting air resistance, two objects of different masses dropped simultaneously from the same height will:

(a) Lighter one reaches first (b) Heavier one reaches first
 (c) **Reach at the same time** ✓ (d) Time depends on shape only

Q22. A stone is dropped from rest. The distance it falls in the first second is (take $g = 10 \text{ m/s}^2$):

(a) 4.9 m (b) **5 m** ✓
 (c) 10 m (d) 2.5 m

Q23. A body is in free fall from rest. Its speed after 3 s ($g = 10 \text{ m/s}^2$) is:

(a) 9.8 m/s (b) **30 m/s** ✓
 (c) 3 m/s (d) 90 m/s

Q24. The time taken by an object to fall freely from a height of 45 m (take $g = 10 \text{ m/s}^2$) is:

(a) 1.5 s (b) 2 s
 (c) **3 s** ✓ (d) 4.5 s

Q25. A ball is thrown vertically upward with initial speed 20 m/s. The maximum height reached ($g = 10 \text{ m/s}^2$) is:

(a) 10 m (b) **20 m** ✓
 (c) 40 m (d) 4 m

Q26. For an object thrown upward (in free fall), the direction of acceleration while it rises is:

(a) Same as velocity (b) **Opposite to velocity (downwards)** ✓
 (c) Zero (d) Perpendicular to motion